
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP021461
TITLE: Fast, Feature-Based Wavelet Shrinkage Algorithm for Image
Denoising

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: International Conference on Integration of Knowledge Intensive
Multi-Agent Systems. KIMAS '03: Modeling, Exploration, and
Engineering Held in Cambridge, MA on 30 September-October 4, 2003

To order the complete compilation report, use: ADA441198

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP021346 thru ADP021468

UNCLASSIFIED



KIMAS 2003 BOSTON, USA

Fast, Feature-Based Wavelet Shrinkage Algorithm for Image

Denoising
Eric J. Balster and Yuan F Zheng, Department of Electrical Engineering, The Ohio State University

Columbus, OH 43210 USA, balstere, zheng@ee.eng.ohio-state.edu

Robert L. Ewing, Embedded Information Systems Engineering Branch, Air Force Research Laboratory

Wright-Patterson AFB, OH 45433, robert.ewing@wpafb.af.mil

Abstract- This paper presents a selective wavelet shrinkage amount of research dedicated to the subject of noise removal,
algorithm for digital image denoising. The performance of this and many different mathematical tools have been proposed.
method is an improvement upon other methods proposed in Variable coefficient linear filters [8, 10], adaptive median fil-
the literature and is algorithmically simple for large computa- ters [3], DCT based solutions [9], cluster filtering [11], etc.
tional savings. The improved performance and computational have all been proposed in the literature.
speed of the proposed wavelet shrinkage algorithm is pre-
sented and experimentally compared with established methods. The wavelet transform has also been used to suppress noise
The denoising methodology incorporated in this new algorithm in digital images. It has been shown the reduction of abso-
involves a two-threshold validation process for real-time selec- lute value in wavelet coefficients is successful in signal restora-
tion of wavelet coefficients. The two-threshold criteria selects tion [5]. This process is known as wavelet shrinkage. Other,
wavelet coefficients based on their absolute value, spatial reg- more complex denoising techniques select or reject wavelet
ularity, and regularity across multiresolutional scales. coefficients based on their predicted contribution to recon-

structed image quality . This process is known as selective
The proposed algorithm takes image features into considera- wavelet shrinkage, and many works have used it as the pre-
tion in the selection process. Statistically, most images have ferred method of image denoising [2,4-7].
regular features resulting in connected subband coefficients.
Therefore, the resulting subbands of wavelet transformed im- Two of the frontrunners in selective wavelet shrinkage for the
ages in large part do not contain isolated coefficients. In the removal of noise, Mallat and Hwang prove the successful re-
proposed algorithm, after coefficients are selected due to their moval of noise in signals via the wavelet transform, by select-
magnitude, image features in terms of spatial regularity are ing and rejecting wavelet coefficients based on their Lipschitz
used to further reduce the number of coefficients kept for im- exponents [5]. Although this fundamental work in image de-
age reconstruction. noising is successful in the removal of noise, its application is

broad and not focused on image noise removal, so the results
The proposed wavelet denoising technique is unique in that its are not optimal.
performance improved upon several other established wavelet
denoising techniques as well as being computationally efficient Malfait and Roose refined the selective shrinkage denoising
to facilitate realtime image processing applications, approach by applying a Bayesian probabilistic formulation,

and modelled the wavelet coefficients as Marcov random se-
1. INTRODUCTION quences [6]. This method is focused on Image de-noising and

its results are an improvement upon [5].
The recent advancement in multimedia technology has pro-
moted an enormous amount of research in the area of im- Later, Pizurica, et al. continued on the work done by [6]. This
age and video processing. Included in the many image and work applied a statistical probabilistic model that extended to

video processing applications such as compression, enhance- both spatial and multiresolutional coefficient redundancies to

ment, and target recognition are preprocessing functions for decide on important and unimportant values [7].

noise removal. Noise removal is one of the most common andimportant processing steps in many image and video systems. Although both algorithms in [6] and [7] give adequate results
in denoised image quality, their computational complexities

Because of the importance and commonality of preprocessing make them impractical for most image and video processing

in most image and video systems, there has been an enormous applications.

We have developed a new selective wavelet shrinkage algo-
rithm which has a distinct aspect. It uses a double validation

KIMAS 2003, October 1-3, 2003, Boston, MA, USA. process to select wavelet coefficients for quality image recon-
Copyright 0-7803-7958-6/03/$17.00 © 2003 IEEE. struction. Furthermore, the algorithm is much more efficient in
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computational complexity than previous works. The algorithm dk,, [n], by convolving the scaling function coefficients, ak [n]
is comprised of three processing steps which are common to all by both a reversed scaling function filter, h[n], a reversed
selective wavelet shrinkage algorithms mentioned previously. wavelet filter, g[n], and downsampling by two. Figure 1 gives
First, a corrupted image is decomposed into multiresolutional a block diagram of the wavelet analysis filterbank.
subbands via the wavelet transform. Next, wavelet coefficients
are selected or rejected based upon criteria developed by the al-
gorithm designer. Finally, the denoised image is formed by re- a+,Oi) H(Z- 1  2k)) ...

constructing the remaining coefficients via the inverse wavelet
transform. The processing step of most cost computationally 42 0 Tdk2 )

and most important in denoising performance is the coefficient

selection process, which calls for effective and efficient criteria 0,07) 42 dkJ, 411

to select or reject wavelet coefficients.
Figure 1 - Wavelet Decomposition

This double validation method for selecting wavelet coeffi-

cients results in a denoising algorithm which gives improved Because each filtered output is downsampled by two, the same
results upon [5-7], but without the computational complexity. number of total coefficients remains the same, regardless of the
The two-threshold requirement investigates the regularities of number of resolution levels, k.
wavelet coefficients both spatially and across scales for predic-
tive coefficient selection, providing selective wavelet shrinkage The reconstruction of finer scaling coefficients is obtained by,
to non-decimated wavelet subbands.
Following the Introduction, Section 2 gives a wavelet overview ak [n] = Zm ak+, [rm]h[n - 2m]"• •mdk+•[m~gn - ra]. (3)

and theory on the 2D non-decimated wavelet analysis and + En dk+, [m]g[n - 2m].

synthesis filters. The proposed denoising algorithm is ap- From Equation 3, we can the obtain an arbitrarily fine scale
plied to non-decimated wavelet coefficients. Section 3 then representation of a signal by upsampling the scaling and
describes the coefficient selection process prior to selective wavelet coefficients, and filtering the coefficients with their
wavelet shrinkage. Section 4 gives testing results for param- respective filters, h[n] and g[n]. The wavelet reconstruction
eter selection. Section 5 gives the estimation algorithms for block diagram is given in Figure 2.
proper parameter selection, and Section 6 gives the results and
discussion.

...a,,(n) 42 0z Bz

2. WAVELET OVERVIEW

Wavelet Filterbank Theory

Figure 2- Wavelet Reconstruction

Let ak [n] be scaling coefficients of scale k and position n, and
let h[n] be the filter coefficients corresponding to the scaling
function. From wavelet theory, we know Non-Decimated Wavelet Transform

ak+1 [n] = ak[m]h[m - 2n], (1)
m In certain applications such as signal denoising, it is not de-

sirable to downsample the wavelet coefficients after decom-
where the coefficients ak+, [n] represent a coarser resolution position, because the spatial resolution of the coefficients
then ak[n]. Equation 1 indicates that the scaling function co- is degraded due to downsampling. Therefore, for the non-
efficients ak+, scale can be obtained by convolving a reversed decimated case, each subband contains the same number of
h[n] with ak, and downsampling by two. coefficients as the original signal. So we must have

Very similarly, Ck[2k+ln] = ak[n]

dk+, [n] = ak[m]g[m - 2n], (2) Ak[2k+ln] = dk[n], (4)

m where Cek [n] are the non-decimated scaling function coeffi-

where dk [n] are the wavelet coefficients of scale k and position cients, and Ak [n] are the non-decimated wavelet coefficients.
n. g[n] is the set of filter coefficients corresponding to the We can substitute Equation 4 into Equation 1 to find
wavelet.

ak+1 [n] = Zm h[m]ak m - 2n]
From Equations I and 2, we can obtain increasingly coarser ak+e [2k+2n] = Em h[m]C°k[2k+l(m - 2n)] (5)
scales of scaling coefficients, ak+,, and wavelet coefficients, Cek+± [n] = Em h[m]ak[2k+lm - n].
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The 2 k+1 scalar introduced into Equation 5 is the equivalent of where
upsampling hr[n] by k + 1 prior to its convolution with ak [n]. f(x, y) = il,.1[x, y]. (13)
Similarly we substitute Equation 4 into Equation 2 to obtain, The four coefficent sets given in Equation 12 is referred to as

A±k, [n] = 1m, g[m]ak [2k+lm - n]. (6) the low-low band, att,k+,, the high-low band, A hl,k+l, the low-

Figure 3 gives a block diagram of the non-decimated wavelet high band, A•lh,k+,, and the high-high band, A•hh,k+,. The sub-

decomposition. bands are named due to the order in which the scaling and/or
the wavelet filters process the scaling function coefficients.

G(z.ýk+1)) Ak,,I12] 4+1)) A, 2[l] For the synthesis of f we have

a�ak.f([,,]~i(j -11+2) all,k[X,y] = 1mnh[m]h[n]a11,k+,[x- 2k+lm,[y 2k+ln]
+1 Zm,n h[m]g[n]AhW,k+1 [x - 2k+lm, y - 2k+ln]

Figure 3- Non-decimated wavelet decomposition __ Zm,n g[m]h[n]A•h,k~1 [x - 2k+lm, y - 2k+ln]
+u EN,n g[m]g[n]A)hh,k+ [x - 2k+lm, y - 2k+ln]

The synthesis of the non-decimated wavelet transform also dif- (14)
fers from the downsampled case. From Equation 3, we have

ak[2n] = E h[2(n - m)lak+, [m] + E g[2(n - m)]dk+, [M]. 3. COEFFICIENT SUPPORT
m m

Substituting (p = n - m) we obtain, One of the many advantages of the wavelet transform over
other mathematical transformations is the retention of spatial

ak[2n] = E h[2p]ak+1 [n - p] + E g[2p]dk+1 [n - p]. (8) information in the wavelet domain. Because of this informa-
p p tion retention, there exists a spacial regularity in the sub-bands

Substituting Equation 4 into Equation 8 we have, of wavelet transformed images. Statistically, most images have
k [2'+ 2 n] =E h[2P] l [2k+2(n - p)]regular features resulting in connected subband coefficients.

[+ k+2(n -] Therefore, the resulting subbands of wavelet transformed im-
+ Ep g[2p]Ak+1 [2k+2(n - p)] ages in large part do not contain isolated coefficients. This

and regularity can aid in deciding which coefficients should be se-
ak[n] = Zp h[2p]ak+± n - 2 k+2p] lected for reconstruction, and which should be thrown away

+ Ep9 g[2p]Ak+, [n - 2k+ 2p]. (10) for maximum reconstructed image quality. The correlation be-
tween coefficients in wavelet sub-bands has been discovered

Looking at Equation 10 information is being thrown away by by many works, but our method in which this spacial regular-
downsampling ak+, [n] and Ak+, [n] by 2 prior to convolution. ity is exploited is unique.
Because the downsampling in the analysis filters is eliminated,
a downsample by 2 is shown in the synthesis equation, Equa- We start with an image signal corrupted with additive noise,
tion 10. If a downsample by 2 is not performed, i.e. (m = 2p), i.e.

then we must divide by 2 to provide power equality. That is, f GT y) = f(x, y) + i7(x, y), (15)

ak[n] = 1"Emn h[m]clk+1 [n - 2k+lm] where f(x, y) is the noiseless 2D signal, ?7(x, y) is a random

"+1 E, g[m]Ak+, [n - 2k+lm] (11) noise function, and f(x, y) is the corrupted signal.

Figure 4 gives a block diagram of the non-decimated wavelet The wavelet transform of f(x, y) generates coefficients, A.,k
transform synthesis. using Equations 12 and 13. Ak is used to create a boolean

I .&•[,,] - 4.11"n] ----] coefficient map, I.,k.

a,2[nl H (Z_) 'Yakn I.,k[x,y] - {otl'-x'n] 0, else (16)

Figure 4- Non-decimated wavelet synthesis A valid coefficient is defined as a coefficient value, A.,k [x, y],
which resuls in I.,k[X, y] = 1, hence the coefficient has been

We can expand to the two-dimensional case. For a 2-D discrete selected due to its magnitude.
signal, f we have,

After coefficients are selected by magnitude, spacial regularity
Ql,k+l [x, y] Z-•n,mn h[n]h[m]at,k[2k+lm - , 2'n - y] is used to further reduce the number of coefficients kept for
Ah/,k+, [x, y] = Zn,m h[n]g[m]j 11,k[2k+lm - x, 2k+In - y] image reconstruction.
Ath,k+l [x, y] = En,m 9[njh[mjojj,k [2k+lm - x, 2k+ln - y]
Ahh,k+1 [X, y] = -'n,m g[n]g[miai,k [2k+lm - x, 2k+ in - y], From I.,k we can count the number of support pixels around

(12) a particular I.,k[x,y]. S.,k[X,y] is the sum of all I.,k which
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support the current boolean value I.,k [x, y]; that is, the total Not only do coefficients of wavelet transformed images have
number of all valid coefficient values which are spatially con- spatial regularity, they also have regularity across scales.
nected to I.,k [X, y]. Therefore, to exploit this regularity, we have

We say that a coefficient is spatially connected to another if L.,k[X,y] Y1{ O.k[XY], J.,k[XY] + Jk-1[XYI.,k[XY > 0
there exists a path of valid coefficients between the two, in 0, else
any direction. Figure 5 gives a generic coefficient map. The (18)

valid coefficients are highlighted in gray. From Figure 5 it can
be shown that coefficients A, B, C, and H do not support any The de-noised image is then reconstructed using the supported
other coefficients in the coefficient map. However, coefficients k [x) y] in the synthesis equation given in

D and F support each other, coefficients E and G support each Equation 14. Thus, we have

other, and N and 0 support each other. Also, coefficients I, J, &ll,k [X, Y] = I Em,n h[m]h[n]&tt,k+, [x - 2k+lm, y - 2k+ln]
K, L, M, P, and Q all support one another. +I Em.n h[m]g[n]Lh,,k+, [X - 2k+lm, y - 2k+ln]

+-/ m,ng[m]h[n]Lth,k+,[x--2k+lm, Y-2k+ln]
--•-m, g[m]g[n]Lhh,k+ [X -- 2k+lm, y - 2k+lnl

(19)
where

f(x, y) = 1[x,y]. (20)

&11,k and f are the reconstructed scaling function coefficients
and denoised image, respectively.

4. TEST IMAGES AND SELECTION OF

THRESHOLD 7 AND SUPPORT S

In the above algorithm, we select wavelet coefficient values
based upon a threshold value T and a support value s. So now
we must obtain choices for these values for optimal image de-

Figure 5 - Generic Coefficient Array noising. We start with a series of test images, given in Figure
7. These test images are to be used in choosing the values for

Figure 6 gives the value of S.,k [x, y] for each of the valid coef- 'r and s.
ficients given in Figure 5.

1,S.,kx~1,4

wheure 6, [- Giste rfnedi oefficient maawthcrepond sisg the nalec- Tetssmgsaeal26 6i ie trigfo h p

wessrynme r of [,Yisupportfne coefficients pereapiag and gon clcwie theec hets images are al"Lx5 i ie trtnrmtennap,
e5 n o

_ " _>::' ;;'g i: ::: " : : :::::::i72 5:
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"Airplane", "Fruits", and "Girl". All of these images are well PSNR R0.. W ft .1 0.=3..30

known standards in the area of image processing.

We begin testing for the optimal values of 7- and s by artificially
adding Gaussian noise to each of the four images, denoising all
four images with a particular T and s, and recording the aver- 2.

age Peak Signal-to-Noise Ratio (PSNR). PSNR of an image is 24,

22,defined by

PSNR = 201og1o , (21)

where so
S240

msef = 0 ( , yj - j(x, y . (22) 2 , .. •, ldM,,

aC~y

M and N are the width and height of the images, respectively. Figure 8 - PSNR Results for Test images, o-- =30

The Haar wavelet is selected for image denoising: :Noise Level (oc) 10 20. 30 40... 50
-1MxAvg. PSNR 33.42: 30.18 28.34 27.07. 26.14:-._!: IM 9•,.A • : P N • . ......... :3:42.:, ........30 ,.!e i .............. ..74 ......... ... ... : ... ...... ..•

,n=0,r ,n 0 svalue 2 3 5 9i il2b gin] 72 ,n-- 1 (23) ...
htn.] ele , rl (3 value 141 28. 38 46, 621o , else

Figure 9 - Maximum average PSNR of test images for various noise levels
The Haar wavelet is used in a non-decimated wavelet decom- and their corresponding threshold and support values
position of the original image. 6 subband levels are used, i.e.
k = -1 to 5. The proposed selective wavelet shrinkage algo-
rithms is applied to all wavelet subbands, and the subbands are tain an estimate of the optimal values for T and s from the
synthesized by the non-decimated wavelet inverse transform. standard deviation of the noise level. However, the level of

noise in a given digital image is unknown. So we must first
Preliminary tests had shown the Haar wavelet has the most estimate the noise. Several well known algorithms have been
promise in reconstructed image quality. The compact support given in the literature to estimate image noise. From [ 1,7] a
of the Haar wavelet enables the generation of wavelet coeffi- median value of the Ahh,O subband is used in the estimation
cients which represent the least amount of original pixel data. process. However, retrieving the median value in a subband
Therefore, when a coefficient is removed because of its in- requires a sorting algorithm which is computationally expen-
significance. The result affects the least number of pixels in sive. We propose an averaging noise estimation algorithm. A
the reconstruction. threshold value, c is used to sort out strong signal (edge) coef-

ficients from the noisy data.

We recorded each of the PSNR averages for 7- ranging from

0 - 100 and s ranging from 0 - 15. We tested the proposed 1 E-[ (24)
algorithm by applying additive white Gaussian noise (AWGN) E MN2•-A)hh'°[xY]I,
with a standard deviation (or,,) of 10, 20, 30, 40, and 50, to each Xu

of the test images. Our method of selective wavelet shrinkage where e is a measure of the average magnitude of a coefficient
is applied to the corrupted image, and the resulting PSNR is in the Ahh,o subband. We also have,
recorded. The results of the testing in which aor, = 30 is given
in Figure 8. p[x,1y] { 1,5e > I Ahh,o[-,Y] (25)

Figure 9 gives the -and s which provide the largest average 0, else

PSNR for each noise level. We will refer to these particular In our noise estimation, we use an average of wavelet coef-
values as 7-m and sm. Figure 9 suggests that parameters 7m ficients instead of a median. The result is a computationally
and sm are functions of the standard deviation of the artificial simpler estimate of the image noise. p1X, yJ is used as a refine-noise, an•.sipeesiaeothimgnospy]iusdaarfn-

ment parameter to remove large signal values located in the
Ahh,O subband. We estimate the noise by,

5. ESTIMATION OF PARAMETER VALUES
aý; = -2 1 p[x, Y~llhh,o[X, Y] 1 (26)

Noise Estimation [Xy

It can be shown from the values given in Figure 9 that the pa- where K is the number non-zero terms in the summation of
rameters 7-m and sm are functions of ar,, therefore we can ob- Equation 26.
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Parameter Estimation 6. RESULTS

Using the known level of noise added to the original images, The images "peppers" and "house" are used for gauging the
we can estimate the values of -rm and sm given in Figure 9. performance of our denoising algorithm. These two images
We use the LMMSE (Linear Minimum Mean Squared Error) have also been used in the results of [5-7]. Therefore, we can
as the estimation procedure. That is, we find two parameters compare our performace with other recent algorithms given in
a, and b, such that the literature.

•mman) = acran+ b.. (27) We have corrupted both the peppers image and house image
The choise a, and b,- will minimize the mean squared error AWGN and used the proposed method for denoising. The re-
(mse): sults are given in Figures 12 and 13.

inseT = Z(mlr)- -(.) (28)

., ..... eppers",
Image input PSNR 22.6 19.6 16.6 13.6 Average

fProposed•Algorithm 30.16 2663 2706 25.51 27.84
Similarly, we Pizurlca 3-band, 161 30 20. 28.60 27,01.0 25,20.5

Pizurica 2-band, [6] 29 90 28.20 26.60 24.90 2740

m(an) a,oar + bs (29) yMait and Ro s, [41 2060 27.30 2600 2460 26.63
Mallat and Hwang, [6 28.20 27.30 27.10 24.60 26.80

where a, and b, are chosen to minimize .M....atb .Ad...ner 29.00 27.10 . 25.30 23.30 26.18... l b ' S...........9 .0 2 :1 ......... .. :• .... ..... ..... ... .-.. ........ ....... ...• ie :..
"House"

mse, (30) Image Input PSNR 23.9 20.9 17.9 14.9 Average
P roposed Agorithm . 32.50 31.26 .3008 2865 36

"" Piz.rca 3-band, [6] 32.80 31..30 280 28.3•0 30..
Pizurica 2-band, [6] 32 1 0 305 293 28 10 30. 00
Malfait and Roose, [4] . 32.90 31.30 29ý80 28.20 30.55

From the data given in Figure 9, the values of at, b., as, and Mallat and Hwang, [5 31.30 . 3050 290 2710 29...50

b,. are found Matlab's Sp. Ad. Wiener 30.30 28.60 26.70 2490 i 27.63

,= 1.14 Figure 11 - PSNR Comparison of the of the proposed method to other meth-

3. = 3.40 (31) ods in the literature

a, = 0.21 (1
b, = 0.60

The values of Tm and sm are given in Figure 10 as well as the
corresponding LMMSE estimates, given in Equation 31. As
given in Figure 10 the estimated values are the best linear fit
into the data. Note that the support value 9 must be an integer
value.

threshold and support eslination based upon noise levol

T0reho-ioad Eftin.le PSNR

06

10 2 30 40 50 60
noise level (slandard deviation, o)

12 [FI ,1
2

laoppod;1vaI,,lnToersS1 -. sppot simate .. . - ...

6-

4._. xI ,- -. -,, ...... a::.:,A ::,

0 10 20 3o40 3' 60
noise level (standard deviation, a) Figure 12 - Results of the proposed image denoising algorithm. Top left:

Original "peppers" image, top right: Corrupted Image, r. = 37.75 - PSNR
Figure 10 - Optimal values for 7-m and s,, and their corresponding esti- = 16.60, bottom left: denoised image with estimated r and s = 0 - PSNR =
mates, 7 and 9,_ 25.76, bottom right: denoised image with estimated 7- and s - PSNR = 27.05

The threshold value T- and the support value s will be deter- Figure 11 gives the results of our proposed method, as well
mined by as the results of [5-7]. As shown in Figure 11, the results of

a'- -t- bs (32) the proposed method are an improvement to other methods de-
s ia8 - + b, scribed in the literature.
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described in the literature.

7. APPENDIX

The computation of S.,k[x, y] if given from the following al-
gorithm:

go = {[-1, -1], [-1, 01, [-1,1], [0,-i],
[0,1, [1, -1], [1, 0], [1, 1]}

0=0, t=0, p=0, D.,k(0)=(x,y)
if I.,k[X,y] == 1,

while D.,k(t) 0 NULL,
(i,j) = D.,k(t)

S~t=t+l
for m = 0 to 7,

if ((I.,k[(i,j) + (m)] == 1) (33)
and (O[(i,j) + !N(m)] == 0)),

p=p+ 1

D.,k(P) = ((i,j) A+ ± (m))
O[(i,j) + Nm)] = 1,

end if
Figure 13 - Results of the proposed image denoising algorithm. Top left: end for
Original "house" image, top right: Corrupted Image, on = 32.47 - PSNR = end while
17.90, bottom left: denoised image with estimated r and s = 0 - PSNR = end if
28.10, bottom right: denoised image with estimatedr and s - PSNR = 30.08 edi

S.,k[X, y] = t

In addition to improved performance, the proposed algorithm O[x, y] is a boolean value to determine whether a particular
is computationally simple to facilitate real-world applications. I.,k [x, y] value has been counted previously. f) is an array of
However, computational simplicity is a fairly difficult metric spatial coordinates of valid coefficients that support the current
to determine when dealing with older literature. The process- coefficient value I.,k [x, y]. NY is a set of vectors corresponding
ing ability of modem computers gives more recent literatures' to neighboring coefficient values.
algorithms processing time an unfair advantage. However, the
computation time of the proposed method is at least an order REFERENCES
of magnitude greater than previous methods, and we have done
testing on some older machines for a more accurate compari- [I] D. L. Donoho and 1. M. Johnstone. Adapting to unknown smooth-

son. Figure 14 gives the computational results of the proposed ness via wavelet shrinkage. Journal of American Statistical Association,

method as well as the results of [6,7]. [ 90:1200-1224, 1995.
[2] David L. Donoho and lain M. Johnstone. Ideal spatial adaptation by

wavelet shrinkage. Biometrika, 81(3):425-455, April 1994.
Processor Pentium IV Pentium Ill IBM RS6000/320H 13] S. J. Huang. Adaptive Noise Reduction and Image Sharpening for Digital
Proposed Algorithm 2.88 , 3.70 Video Compression.

.izurica 3-band, [6] 4.00 " [4] C. R. Jung and J. Scharcanski. Adaptive Image Denoising in Scale-Space
Pizurica 2 band, 161 . .. . 00 Using the Wavelet Transform. In XIVBrazilian Symposium on Computer

Malfait ard Roose, [41 Graphics and Image Processing, Oct. 2001.
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[6] S. Mallat and W. L. Hwang. Wavelet-Based Image Denoising Using a
hthis is not a true comparison of the difference com- Markov Random Field A Priori Model. IEEE Transcactions on ImageAlthough tProcessing, 6(4):549-565, April 1997.

putational complexity between the proposed algorithm and that [7] A. Pizurica and M. Acheroy W. Philips, I. Lemahieu. A Joint Inter-
of [6,7], the proposed algorithm does show a substantial drop and Intrascale Statistical Model for Bayesian Wavelet Based Image De-
in computation time. noising. IEEE Transcactions on inage Processing, 11(5):545-557, May

2002.
[8] P. Rieder and G. Scheffier. New Concepts on Denoising and Sharp-

In this paper, a new selective wavelet shrinkage algorithm for ening of Video Signals. IEEE Transactions on Consumer Electronics,
image denoising has been described. The proposed algorithm 47(3):666-671, August 2001.

[9] M. J. Kim S. D. Kim, S. K. Jang and J. B. Ra. Efficient Block-Based
uses a two-threshold support criteria which investigates coef- Coding of Noise Images by Combining Pre-Filtering and DCT.
ficient magnitude, spatial support, and support across scales [10] Y.I. Wong. Nonlinear Scale-Space Filtering and Multiresolution System.

IEEE Transactions on Image Processing, 4(6):774-786, June 1995.in the coefficient selection process. The computationally sim- [11] E. Linzer Y. F. Wong, E. Viscito. PreProcessing of Video Signals for
pie algorithm facilitates real world applications and the perfor- MPEG Coding by Clustering Filter. In International Conference on Im-
mance results are an improvement upon established methods age Processing, volume 2, page 2129, Oct. 1995.

728


